Efficacy of Blood Sources and Artificial Blood Feeding Methods in Rearing of Aedes aegypti (Diptera: Culicidae) for Sterile Insect Technique and Incompatible Insect Technique Approaches in Sri Lanka
نویسندگان
چکیده
INTRODUCTION Selection of the artificial membrane feeding technique and blood meal source has been recognized as key considerations in mass rearing of vectors. METHODOLOGY Artificial membrane feeding techniques, namely, glass plate, metal plate, and Hemotek membrane feeding method, and three blood sources (human, cattle, and chicken) were evaluated based on feeding rates, fecundity, and hatching rates of Aedes aegypti. Significance in the variations among blood feeding was investigated by one-way ANOVA, cluster analysis of variance (ANOSIM), and principal coordinates (PCO) analysis. RESULTS Feeding rates of Ae. aegypti significantly differed among the membrane feeding techniques as suggested by one-way ANOVA (p < 0.05). The metal plate method was identified as the most efficient and cost-effective feeding technique. Blood feeding rate of Ae. aegypti was higher with human blood followed by cattle and chicken blood, respectively. However, no significant difference was observed from the mosquitoes fed with cattle and human blood, in terms of fecundity, oviposition rate, and fertility as suggested by one-way ANOVA (p > 0.05). CONCLUSIONS Metal plate method could be recommended as the most effective membrane feeding technique for mass rearing of Ae. aegypti, due to its high feeding rate and cost effectiveness. Cattle blood could be recommended for mass rearing Ae. aegypti.
منابع مشابه
Blood serum and BSA, but neither red blood cells nor hemoglobin can support vitellogenesis and egg production in the dengue vector Aedes aegypti
Aedes aegypti is the major vector of dengue, yellow fever and chikungunya viruses that put millions of people in endemic countries at risk. Mass rearing of this mosquito is crucial for strategies that use modified insects to reduce vector populations and transmission of pathogens, such as sterile insect technique or population replacement. A major problem for vector mosquito mass rearing is the...
متن کاملCombining the Sterile Insect Technique with the Incompatible Insect Technique: I-Impact of Wolbachia Infection on the Fitness of Triple- and Double-Infected Strains of Aedes albopictus
The mosquito species Aedes albopictus is a major vector of the human diseases dengue and chikungunya. Due to the lack of efficient and sustainable methods to control this mosquito species, there is an increasing interest in developing and applying the sterile insect technique (SIT) and the incompatible insect technique (IIT), separately or in combination, as population suppression approaches. A...
متن کاملMathematical model to assess the control of Aedes aegypti mosquitoes by the sterile insect technique.
We propose a mathematical model to assess the effects of irradiated (or transgenic) male insects introduction in a previously infested region. The release of sterile male insects aims to displace gradually the natural (wild) insect from the habitat. We discuss the suitability of this release technique when applied to peri-domestically adapted Aedes aegypti mosquitoes which are transmissors of Y...
متن کاملMathematical Modelling of Sterile Insect Technology for Mosquito Control
Reduction of mosquito populations will, at least, reduce substantially the transmission of malaria disease. One potential method of achieving this reduction is the environmentally-friendly population control method known as the Sterile Insect Control (SIT) method. The SIT method has so far not been widely used against insect disease vectors, such as mosquitoes, because of various practical diff...
متن کاملA spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti.
We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT) for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of dengue fever. The model differs from the majority of those studied previously in that it is simultaneously spatially explicit and involves pulsed, rather than continuous, sterile insec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017